人脸检测论文:LFFD: A Light and Fast Face Detector for Edge Devices及其PyTorch实现

LFFD: A Light and Fast Face Detector for Edge Devices
论文链接:https://arxiv.org/pdf/1904.10633.pdf
Pytorch代码: https://github.com/shanglianlm0525/PyTorch-Networks
在这里插入图片描述

在这里插入图片描述
Pytorch代码

import torch
import torch.nn as nn

def Conv1x1ReLU(in_channels,out_channels):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
            nn.ReLU6(inplace=True)
        )

def Conv3x3ReLU(in_channels,out_channels,stride,padding):
    return nn.Sequential(
        nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, padding=padding),
        nn.ReLU6(inplace=True)
    )

class LossBranch(nn.Module):
    def __init__(self,in_channels, mid_channels=64):
        super(LossBranch, self).__init__()
        self.conv1 = Conv1x1ReLU(in_channels, mid_channels)

        self.conv2_score = Conv1x1ReLU(mid_channels, mid_channels)
        self.classify = nn.Conv2d(in_channels=mid_channels, out_channels=2, kernel_size=1, stride=1)

        self.conv2_bbox = Conv1x1ReLU(mid_channels, mid_channels)
        self.regress = nn.Conv2d(in_channels=mid_channels, out_channels=4, kernel_size=1, stride=1)

    def forward(self, x):
        x = self.conv1(x)
        cls = self.classify(self.conv2_score(x))
        reg = self.regress(self.conv2_bbox(x))
        return cls,reg

class LFFDBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride):
        super(LFFDBlock, self).__init__()
        mid_channels = out_channels
        self.downsampling = True if stride == 2 else False

        if self.downsampling:
            self.conv = nn.Conv2d(in_channels=in_channels, out_channels=mid_channels, kernel_size=3, stride=stride, padding=0)

        self.branch1_relu1 = nn.ReLU6(inplace=True)
        self.branch1_conv1 = Conv3x3ReLU(in_channels=mid_channels, out_channels=mid_channels, stride=1, padding=1)
        self.branch1_conv2 = nn.Conv2d(in_channels=mid_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1)

        self.relu = nn.ReLU6(inplace=True)

    def forward(self, x):
        if self.downsampling:
            x = self.conv(x)
        out = self.branch1_conv2(self.branch1_conv1(self.branch1_relu1(x)))
        return self.relu(out+x)

class LFFD(nn.Module):
    def __init__(self, classes_num = 2):
        super(LFFD, self).__init__()

        self.tiny_part1 = nn.Sequential(
            Conv3x3ReLU(in_channels=3, out_channels=64, stride=2, padding = 0),
            LFFDBlock(in_channels=64, out_channels=64, stride=2),
            LFFDBlock(in_channels=64, out_channels=64, stride=1),
            LFFDBlock(in_channels=64, out_channels=64, stride=1),
        )
        self.tiny_part2 = LFFDBlock(in_channels=64, out_channels=64, stride=1)

        self.small_part1 = LFFDBlock(in_channels=64, out_channels=64, stride=2)
        self.small_part2 = LFFDBlock(in_channels=64, out_channels=64, stride=1)

        self.medium_part = nn.Sequential(
            LFFDBlock(in_channels=64, out_channels=128, stride=2),
            LFFDBlock(in_channels=128, out_channels=128, stride=1),
        )

        self.large_part1 = LFFDBlock(in_channels=128, out_channels=128, stride=2)
        self.large_part2 = LFFDBlock(in_channels=128, out_channels=128, stride=1)
        self.large_part3 = LFFDBlock(in_channels=128, out_channels=128, stride=1)

        self.loss_branch1 = LossBranch(in_channels=64)
        self.loss_branch2 = LossBranch(in_channels=64)
        self.loss_branch3 = LossBranch(in_channels=64)
        self.loss_branch4 = LossBranch(in_channels=64)
        self.loss_branch5 = LossBranch(in_channels=128)
        self.loss_branch6 = LossBranch(in_channels=128)
        self.loss_branch7 = LossBranch(in_channels=128)
        self.loss_branch8 = LossBranch(in_channels=128)

    def forward(self, x):
        branch1 = self.tiny_part1(x)
        branch2 = self.tiny_part2(branch1)
        branch3 = self.small_part1(branch2)
        branch4 = self.small_part2(branch3)
        branch5 = self.medium_part(branch4)
        branch6 = self.large_part1(branch5)
        branch7 = self.large_part2(branch6)
        branch8 = self.large_part3(branch7)

        cls1,loc1 = self.loss_branch1(branch1)
        cls2,loc2 = self.loss_branch2(branch2)
        cls3,loc3 = self.loss_branch3(branch3)
        cls4,loc4 = self.loss_branch4(branch4)
        cls5,loc5 = self.loss_branch5(branch5)
        cls6,loc6 = self.loss_branch6(branch6)
        cls7,loc7 = self.loss_branch7(branch7)
        cls8,loc8 = self.loss_branch8(branch8)

        cls = torch.cat([cls1.permute(0, 2, 3, 1).contiguous().view(loc1.size(0), -1),
                         cls2.permute(0, 2, 3, 1).contiguous().view(loc1.size(0), -1),
                         cls3.permute(0, 2, 3, 1).contiguous().view(loc1.size(0), -1),
                         cls4.permute(0, 2, 3, 1).contiguous().view(loc1.size(0), -1),
                         cls5.permute(0, 2, 3, 1).contiguous().view(loc1.size(0), -1),
                         cls6.permute(0, 2, 3, 1).contiguous().view(loc1.size(0), -1),
                         cls7.permute(0, 2, 3, 1).contiguous().view(loc1.size(0), -1),
                         cls8.permute(0, 2, 3, 1).contiguous().view(loc1.size(0), -1)], dim=1)
        loc = torch.cat([loc1.permute(0, 2, 3, 1).contiguous().view(loc1.size(0), -1),
                         loc2.permute(0, 2, 3, 1).contiguous().view(loc1.size(0), -1),
                         loc3.permute(0, 2, 3, 1).contiguous().view(loc1.size(0), -1),
                         loc4.permute(0, 2, 3, 1).contiguous().view(loc1.size(0), -1),
                         loc5.permute(0, 2, 3, 1).contiguous().view(loc1.size(0), -1),
                         loc6.permute(0, 2, 3, 1).contiguous().view(loc1.size(0), -1),
                         loc7.permute(0, 2, 3, 1).contiguous().view(loc1.size(0), -1),
                         loc8.permute(0, 2, 3, 1).contiguous().view(loc1.size(0), -1)], dim=1)
        out = (cls,loc)
        return out

if __name__ == '__main__':
    net = LFFD()
    print(net)

    input = torch.randn(1,3,480,640)
    output = net(input)
    print(output[0].shape)
    print(output[1].shape)
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页